Pre-class Warm-up!!!
How many ways can you think of to describe a curve in $R \wedge 2$?
a. ≥ 4
b. 3
c. 2
d. 1
e. 0

Quiz tomoyow: on the material
from last week plus the week before that: $8.3,6.1,6.2,1.4$
7.3 Parametrized Surfaces.

We learn:

- what is a surface. It is like a sheet that
- we have 3 ways to describe a surface
- How to compute the tangent plane at a point from a parametrization.

Review: we can sometimes describe a curve in 3 ways:

- the graph of a function, like the graph of $f(x)=x^{\wedge} 2$
- The solution set of some equations, like $y=x^{\wedge} 2$
- by a parametrization, like $c(t)=(t, t \wedge 2)$

We know how to convert between these and how to compute tangent lines to curves.

Definition. A parametrization of a surface in $R \wedge 3$ is a function $\Phi: D \longrightarrow \mathbb{R}^{3}$ where $D \subseteq \mathbb{R}^{2}$ Write $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ Examples: The graph of $f(x, y)=x \wedge 2-y \wedge 2$

- has a parametrization

$$
\Phi(u, v)=\left(u, v, u^{2}-v^{2}\right)
$$

- is the set of points satisfying an equation

$$
z=x^{2}-y^{2}
$$

- We should recognize parametrization of a sphere, and of a cone

$$
\begin{aligned}
& \text { a sphere, and of a cone } \\
& \Phi(u, v)=(\sin v \cos u, \sin v \sin u, \cos v) \\
& 0 \leq u \leq 2 \pi, 0 \leq v \leq \pi
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(u, v)=(u \cos v, u \sin v, u) \\
& u \geqslant 0 \quad 0 \leqq v<2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& r=u \\
& \theta=v
\end{aligned}
$$

The surface itself is $\Phi(D)$

Tangent vectors
Recall: for a path $c: R->R \wedge 3$ the velocity vector c^{\prime} points tangentially to the curve.

$$
=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)
$$

Given a parametrization of a surface

$$
\Phi(u, v)=(x(u, v), y(u, v), z(u, v))
$$

we get two vectors tangential to the surface:

$$
\begin{aligned}
& T_{u}=\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
& T_{v}=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{aligned}
$$

Example: the parametrization of the cone:

$$
\operatorname{Phi}(u, v)=(u \cos (v), u \sin (v), u),
$$

$$
\begin{aligned}
u & \geq 0,0 \leq v \leq 2 \pi \\
T_{u} & =(\cos v, \sin v, 1) \\
T_{v} & =(-u \sin v, u \cos v, 0)
\end{aligned}
$$

We get a normal vector

$$
T_{u} \times T_{v}=(-u \cos v,-u \sin v, u)
$$

Tangent plane:

$$
-u \cos v(x-u \cos v)+\quad+\quad=0
$$

We always want the parametrization to be regular, meaning $T_{u} \times T_{v} \neq 0$ always.

Example: the graph of $f(x, y)=x^{\wedge} 2-y^{\wedge} 2$ has parametrization
$\operatorname{Phi}(u, v)=\left(u, v, u^{\wedge} 2-v^{\wedge} 2\right)$

The tangent vectors are the same as we got previously.

$$
T_{u}=(1,0,2 u) \quad T_{v}=(0,1,-2 v) .
$$

Question: are either of the following surfaces (that we just saw) the graphs of functions?
a. the sphere

Yes
No
b. the cone

