Ore-class Warm-ub!!!

How many ways can you think of to describe a curve in R^2 ?

Quiz tomorrow: on the material from last week plus the week before

that: 8.3, 6.1, 6.2, 1.4

7.3 Parametrized Surfaces.

We learn:

- what is a surface. It is like a sheet that we have 3 ways to describe a surface
- How to compute the tangent plane at a point from a parametrization.

Review: we can sometimes describe a curve in 3 ways:

- the graph of a function, like the graph of $f(\mathbf{x}) = \mathbf{x}^2$
- The solution set of some equations, like $y = x^2$
- by a parametrization, like $c(t) = (t, t^2)$

We know how to convert between these and how to compute tangent lines to curves.

• the graph of a function
$$F(x,y)$$
 like
• the set of points (x, y, z) satisfying
some equation, like $z = x^2 - y^2$

· by a parametrization

Tangent vectors

fix v

Recall: for a path $c : R \rightarrow R^{3}$ the velocity vector c' points tangentially to the curve. $= \begin{pmatrix} dx \\ dt \end{pmatrix}, \frac{dy}{dt}, \frac{dz}{dt} \end{pmatrix}$ Given a parametrization of a surface $T_{u} = (\cos v, \sin v, 1)$ $\overline{\Phi}(u,v) = (x(u,v), y(u,v), z(u,v))$ Ty=(-usinv, ucosv, O we get two vectors tangential to the surface: $T_{u} = \begin{pmatrix} \partial x & \partial y & \partial z \\ \partial u & \partial u & \partial u \end{pmatrix}$ $= \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right)$ Tu \bigvee

14

Example: the parametrization of the cone: Phi $(u,v) = (u \cos(v), u \sin(v), u),$ $u \ge 0, 0 \le v \le 2\pi$

We get a normal vector

 $T_{u} \times T_{v} = (-u \cos v - u \sin v, u)$ Tangent plane :

-ucosv (x-ucosv)+ + \bigcirc ~

We always want the parametrization to be regular, meaning $T_{\mu} \times T_{\nu} \neq 0$ always

Example: the graph of $f(x,y) = x^2 - y^2$

has parametrization

Phi $(u, v) = (u, v, u^2 - v^2)$

The tangent vectors are the same as we got previously.

 $T_{n} = (1, 0, 2u) \quad T_{v} = (0, 1, -2v).$

Question: are either of the following surfaces (that we just saw) the graphs of functions?

a. the sphere

b. the cone

